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Abstract-T:his study addresses the electronic cooling problem from the perspective of scaling laws applied 
to a simple conjugate heat transfer geometry, steady shear flow over a heated strip on a flat plate. The 
results are reported in a compact form in terms of a modified Nusselt number and a combined parameter 
(k$k,)Pe”‘. IVumerical results are reported that apply to a wide range of values for fluid flow, thermal 
conductivity, and thickness of the flat plate, and the results include simple design correlations. A new 
dimensionler#s parameter is suggested for detetining when the fluid axial heat conduction can be neglected. 
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1. INTRODUCTION 

In 1961 Perelman [I] coined the phrase ‘conjugated 
heat transfer’ to describe the heat transfer between a 
fluid and a solid in which the interface condition is 
initially unknown and is found from the heat transfer 
solution. In the past three decades there has been 
much research in this area with applications including 
aerodynamic heating, high-efficiency heat exchangers, 
hot-film sensors, ,and electronic cooling. Recently 
there has been strong interest in electronic cooling 
applications, however some of this work has not taken 
advantage of dimensionless parameters identified in 
the conjugate heat transfer literature. This study 
approaches the electronic cooling problem from the 
perspective of conjugate heat transfer to take advan- 
tage of the scaling laws and dimensionless parameters 
appropriate to a simple geometry, steady flow over a 
heated strip on a flat plate. 

A brief review of some conjugate heat transfer 
literature pertinent to the electronic cooling appli- 
cation is discussed below. The literature discussed 
below contains one or more of the following elements : 
use of a combined parameter for presenting the 
results ; theory basl:d on integral equations with tem- 
perature matching on the fluid/solid interface ; design 
correlations or approximate formulas. 

Perelman [l] studied laminar flow over an internally 
heated flat plate with asymptotic expansions. Per- 
elman identified a parameter that combined con- 
ductivity ratio, I?randtl number and Reynolds 
number. Luikov [2] used the same combined par- 
ameter which he calls the Brun number in an approxi- 
mate analysis involving a simplified thin-solid 
geometry with a linear temperature distribution across 
the solid. Later in this paper the Brun number will be 
discussed in some detail. Several other researchers 

have presented results with a combined parameter: 
Sparrow and Chyu [3] in a finite-difference study of a 
thin rectangular fin ; Wijeysundera [4] in a laminar 
duct flow with axial wall conduction ; Cole and Beck 
[5] in steady flow with transient heating from a small 
strip ; Lee and Ju [6] in a parallel plate geometry in 
which the entire plate is heated; Rizk et al. [7] with a 
uniform velocity distribution (slug flow) ; Pozzi and 
Lupo [8] with the geometry of Luikov extended to 
compressible flow ; Pop and Ingham [9] also with the 
geometry of Luikov in which the combined parameter 
appears as part of the length scale used to normalize 
the equations. 

Many different numerical and analytical methods 
have been applied to conjugate heat transfer. The 
present work involves integral equations with tem- 
perature and heat flux matching along the interface ; 
these methods have been used for several years [l& 
141. Anderson [15] used a summation of discrete 
elements and an adiabatic heat transfer coefficient for 
superposition along the fluid-solid interface, however 
this approach is equivalent to the continuous integrals 
and Green’s functions used in the present research, 
since the adiabatic heat transfer coefficient is pro- 
portional to the reciprocal of the fluid-side Green’s 
function. 

Several researchers have studied a range of flow 
conditions and have presented design correlations of 
their results : Ramadhyani et al. [ 161 in a finite-differ- 
ence study of two heat sources on a thick solid ; Incro- 
pera et al. [ 171 in a combined experimental and theor- 
etical study of a constant temperature copper block 
flush-mounted in a channel flow ; Pozzi and Lupo [8] 
with viscous dissipation in the compressible flow ; and, 
Prasad and Dey Sarkar [ 181. None of these inves- 
tigators have studied variations in the thickness of the 
solid. 
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NOMENCLATURE 

a half-length of heated strip [m] Greek symbols 
Br, Brun number, equation (15) % fluid thermal dEusivity [m’ ss’] 
C, local skin friction coefficient B velocity gradient at wall [s-l] 
D thickness of solid [m] A = (k&J Pe”3, conjugate Peclet 
G Green’s function, equation (16) number 
k thermal conductivity [W (m K))‘] 9 influence function, integral of Green’s 
M number of surface elements function 
N14 =h(2a)/kf, Nusselt number 5 source location, equation (16) [ml. 
N: = h(2a)/k,, modified Nusselt 

number Subscripts 
P(X) = 1 on heated strip = 0 elsewhere f fluid 
Pe = ba’/q, Peclet number S solid 
Pr Prandlt number i index for temperature location 
Re Reynolds number .i index for surface element location 
4 interface heat flux /W m-‘1 cc ambient. 
40 source heat flux p m-‘1 
T temperature [K] Superscripts 
X streamwise coordinate [m] ( ) + dimensionless parameters, equation (7) 
Y transverse coordinate [ml. 0 spatial average on the heated strip. 

Sugavanam et al. [ 191 carried out a finite-difference circuit board). The flat plate is cooled by a fluid flow 
study of a flush-mounted heat source on a circuit 
board with laminar air flow over one or both sides of 
the circuit board. Ortega [20] extended this work to 
include rectangular heat sources and three-dimen- 
sional analysis. Both authors studied three discrete 
values of the board thickness, and they did not include 
the effect of board thickness in their correlations for 
Nusselt number. 

There are very few experiments reported in a form 
that allow comparison with theory. Liu et al. [21] 
measured the surface temperature on a small heated 
strip cooled by air flow with a fluorescent paint tech- 
nique. Ortega et al. [22] carried out an a benchmark 
experiment with air cooling of a heat source on plexi- 
glas and reported spatial average heat transfer 
coefficients. 

The purpose of the paper is threefold: firstly, to 
present numerical results for a wide range of fluid 
flow, thermal conductivity ratio, and solid thickness 
in terms of a combined parameter (kJk,)Pe”3 called 
the conjugate Peclet number ; secondly, to investigate 
the limiting behavior for large and small values of the 
conjugate Peclet number; and thirdly, to suggest a 
new dimensionless parameter for determining when 
the fluid axial heat conduction can be neglected in 
conjugate heat transfer. 

2. ANALYSIS 

The geometry is shown in Fig. 1. A flat plate con- 
tains an embedded heated strip of streamwise length 
2a. The flat plate is composed of a single layer with 
an effective thickness, D, which may represent a plate 
composed of several layers (for example an electronic 

that has a linear velocity profile (U = /Iyr), which is 
appropriate if the thermal boundary layer caused by 
the heated region is not too thick and if the local shear 
stress is not varying too rapidly in the streamwise 
direction. The thermal properties are constant (small 
temperature rise assumed). Radiation and natural 
convection are neglected, axial heat conduction in the 
fluid is neglected, and viscous dissipation is not pre- 
sent in the fluid. 

The equations governing the temperature are given 
by 

a2Tf 
Fluid /Jyrz = t(r-. 

aw ’ 
--Ooxxm (1) o<y,<cc 

Solid 
a=T 

$ + s = 0. 
aw ’ 

-cO‘cx<cc (2) O<y,<D 

with boundary conditions 

T(x+--co,y) = T(x+co,y) = T&,y+ ~0) = Tm 

(3) 

5(x, D) = 0. 
s 

Fig. 1. Conjugate heat transfer geometry. 
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For perfect thermal contact between the fluid, the 
surface of the solid and the thin heated strip, the 
matching conditions are given by 

C(x, 0) = T,(x, 0) (5) 

- k,z(x, 0) -k, %(x, 0) = q&x). (6) 
f s 

Here q. is the heat flux introduced by the thin heater 
and function p(x) is a top-hat function equal to unity 
on --a < x < a and equal to zero elsewhere. 

Next dimensionless variables will be introduced to 
reduce the number of parameters needed to describe 
the temperature : 

,D+ =D 
a 

k ar, 
qz = - &ay y=o’ 

kr aT, 
4: = -40% =o’ (7) 

The length scale is chosen to be ‘a’, the half-length 
of the heated strip, which is useful when the fluid 
convective heat transfer is the dominant mechanism. 
Later in the paper parameters based on length scale 
‘D’ will also be ulsed. With the above parameters, 
equations (1) and (2) can be expressed in dimen- 
sionless form : 

Fluid 
a2T: 

y: $ = -. 
-co<x+<cO 

a(y:)2 ’ o<y:<cc 

(8) 

Solid a’r,’ + .a2 = 0. 
--co<x+<cc 

a(x+)2 Ia ’ O<y:<D/a ’ 

(9) 

The boundary conditions in dimensionless form are 
especially identical to equations (3) and (4) and will 
not be repeated. The dimensionless matching con- 
ditions are given by 

T;(x+,O) = T,+(x+,O) (10) 

-A~--,o)-~x+,o) =p(x’) (11) 
f s 

where A = (kdk,) (/?a’/~) ‘I3 is called the conjugate 
Peclet number in which /?a is the characteristic 
velocity. 

The dimensionless boundary value problem given 
above indicates that the temperature depends on coor- 
dinates x+ and y+, on the conjugate Peclet number A, 
and on the geometry D+. That is, the functional form 
of the temperature can be expressed as T: = 
T: (x+, y:, A, D+)m for the fluid side and a similar 
relationship can be written for the solid side. This 
important result, reported previously [6,23] indicates 

that a short list of parameters embodies all aspects of 
the temperature in the conjugate heat transfer prob- 
lem, including the fluid flow, the thermal properties, 
and the geometry of the solid. The temperature on 
the interface at y = 0 has the functional relationship 
T+ = T+(x+, A, D+) and finally the spatial average 
temperature on the heated region has the functional 
form F = T+(A, 0’) where the overbar is used to 
denote a spatial average. 

2.1. Nusselt number 
The Nusselt number N,, is often used in conjugate 

heat transfer to present results in dimensionless form 
even though N,, is a derived parameter, not a fun- 
damental parameter, since N, does not appear in equa- 
tions (8)-( 11). Let the spatial-average Nusselt number 
be defined as 

’ 2a 
f ay, (Tf- T,) yf=O kf > - (12) 

where the expression in brackets is the average heat 
transfer coefficient on the heated region of the fluid- 
solid interface and where the length scale is 2~2, the 
streamwise length of the heated region. Using the 
dimensionless parameters given in equation (7) the 
Nusselt number may be stated in the form 

$=O’ 
(13) 

Since dimensionless temperature T: depends on par- 
ameters A and D/a, the above expression shows that 
the functional form of the spatial-average Nusselt 
number can be stated x = ??&A, D/a, Pe) where 
Pe = /?a2/af is the (local) Peclet number. Lee and Ju 
[6] showed that a modified Nusselt number defined 
by rz = (k,/k,)N, is a more appropriate parameter 
because its functional form has fewer dimensionless 
parameters ; that is, rz = N,* (A, D/u). This result can 
be derived by multiplying equation (13) by (kdk,) to 
obtain : 

(14) 

Parameter Fz has important implications for the com- 
pact presentation of experimental data and on the 
creation of the useful design correlations for conjugate 
heat transfer. For example, experiments carried out 
for one solid material (such as one type of circuit 
board in an electronic cooling application) may be 
used to predict the heat transfer results for a variety 
of solid materials. 

2.2. Brun number 
In this section the Brun number discussed by Lui- 

kov [2] is related to the conjugate Peclet number. 
Luikov studied a finite-length flat plate with constant 
temperature on the bottom side of the plate and con- 
vection on the top side. Luikov introduced the Brun 
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number with a scaling argument based on the wall 
flux matching condition, equation (6) in discrete form 

(note the absence of a heated strip) where 6r is the 
thickness of the thermal boundary layer in the fluid. 
The value &may be estimated from a fluid-only Nus- 
selt number correlation according to 6,(x) N x/Nux 
where for an isothermal plate N,, = A *(Pr)“(Re,)” 
(here ‘A’ is some constant). Combine all these 
relations into the above flux matching condition and 
solve for the ratio of the temperature differences. The 
Brun number is taken to be proportional to the tem- 
perature ratio, given by 

AT, _ - Br, = p ~*(Pr)m(Rex)‘“. 
AT, 

(15) 
s 

Luikov used the Brun number Br, as the criterion for 
determining when conjugate analysis should supplant 
fluid-only analysis for the finite-plate geometry ; if the 
Brun number is large enough then conjugate analysis 
is required. 

The conjugate Peclet number used in the present 
research, A = (kdk,) (Pe)“‘, although derived from the 
dimensional analysis of equations (l)-(6), is related to 
the Brun number in the particular case of shear flow. If 
the velocity profile is linear, and further if the velocity 
profile varies slowly in the streamwise direction, then 
the fluid-only correlation for the Nusselt number on 
an isothermal plate is N,, = AQ’r)‘i3(Rex)‘i3. In this 
case the Brun number becomes 

Br, = :z*(Pr.Re,)‘/’ 
s 

which actually contains the conjugate Peclet number. 
This Brun number would be appropriate for shear 
flow over a finite-length flat plate with a constant 
temperature imposed at the bottom of the plate. 

2.3. Surface element method 
The numerical results presented in this paper were 

obtained with the surface element (SE) method, a 
variant of the boundary element (BE) method, and a 
brief discussion of the numerical method is presented 
below. The temperature in each body may be stated 
as an integral of an unknown heat flux distribution 
and a known Green’s function, 

T:(x,y = 0) = [” q:(W,(x--r)cK’ 
J-m 

T;(x,y=O)=$ f 
s 

; %+(WW--<)d<+. (16) 
m 

The Green’s function G(x- 5) is the dimensionless 
temperature rise at position x in each body (fluid or 
solid) due to an infinitesimal heat source located at 
position r on the y = 0 interface. The Green’s func- 

tions are found using well-known methods [24]. The 
Green’s function integral for each body is transformed 
into a linear algebraic equation by discretizing the 
interface between the fluid and the solid into M surface 
elements, and by taking the heat flux to be piecewise 
constant over each surface element. Then, the Green’s 
function integral for each body is written in discrete 
form: 

T: (Xc, 0) = T 4s(Xi, Xj)qZ (X,) 
j= 1 

T: (xi, 0) = f 44X,, Xj)qT (Xj). 
j=l 

(17) 

Influence functions 4 are integrals of the Green’s func- 
tions that represent the (dimensionless) temperature 
rise at location xi caused by a unit heat flux over a 
surface element centered at location xj. Because the 
influence functions for the SE method depend on the 
type of boundary conditions in each body, only that 
subset of the fluid-solid interface that is actively trans- 
ferring heat must be discretized. In contrast, the BE 
method requires that the entire domain boundary be 
discretized which requires many more elements. In the 
present work the fluid is semi-infinite and the solid is 
an infinite slab extending over (- co < x < co). 

The temperatures given by equation (17) may be 
set equal to one another according to equation (lo), 
and the heat flux to the solid qs can be eliminated with 
the heat flux matching condition, equation (11) to 
give 

,g, (#+(X,,xj)q: (x,) = ,i, d&c% x,m --4: (xJ)), 

The form appropriate for matrix solution is 

,g, [~f(Xi, xj) + 4Jxi, x,)ld txj) = jf, 4s(x” xj)p” 

(18) 
The above expression is a set of M linear algebraic 

equations for the M unknown heat flux values 
q:(x,). Once the heat fluxes have been found, then 
the temperature T+ and the Nusselt number may be 
calculated anywhere on the fluid-solid interface. Typi- 
cally M = 32 variable-length surface elements are 
needed (eight on the heated region) to adequately 
describe the spatial average heat flux and Nusselt 
number; additional refinement changes the spatial 
average results less than 0.1%. Calculation of the heat 
flux and temperature distribution for one geometry at 
M = 32 requires about 0.6 CPU seconds on a DEC 
AlphaAXP 2100 computer. 

The numerical results of this method have been 
verified by comparison with literature calculations 
that involve the fully-developed linear velocity dis- 
tribution. The results have also been checked against 
the conjugate calculations of Sugavanam et al. [19] in 
which a heated strip is located in the laminar entrance 
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ooooo entrance flow 

24 
0.000 0.004 0.008 

x/(b Re) 
Fig. 2. Spatial average Nusselt number on the heat source vs 
distance for laminar entrance flow [19] and for fully 

developed shear flow with matching local shear stress. 

region of a parallel-plate flow. To compare the present 
work with Sugavanam et al., the local velocity gradi- 
ent at the heated strip was determined from detailed 
velocity distribution data given by Shah and London 
[25]. The comparis,on is shown in Fig. 2 in the form 
of spatial average Nusselt number vs the distance 
between the flow entrance and the leading edge of the 
heated strip (at x =: 0 the heated strip is located at the 
flow entrance). The case shown is for D/a = 1, DH = 1 
cm, Re = 1260 and kJks = 10, so that the fluid-side 
heat transfer is very important in describing the con- 
jugate heat transfe:r. The agreement is good when the 
heated strip is near the flow entrance and the agree- 
ment improves as the distance from the entrance 
increases ; the values agree within 1% for 
x/(D,Re) > 0.005. Here D, is the hydraulic diameter 
and Re is the Reynolds number based on hydraulic 

diameter. This comparison shows that the linear vel- 
ocity model is a useful approximation in a developing 
flow if the thermal effects are dominated by the flow 
field directly above the heated strip (A > 1) and if the 
velocity gradient is not changing too rapidly. The 
linear velocity distribution is exactly correct for fully 
developed fluid flow (p # /3(x)) over a small heated 
strip, because the thermal boundary layer will be lim- 
ited to the linear region of the hydrodynamic bound- 
ary layer. 

3. RESULTS, 1 < A < 100 

The computational efficiency of the SE method has 
made it possible to explore a wide range of conjugate 
heat transfer behaviors by varying the conjugate 
Peclet number A and geometric ratio D/a. Typical A- 
values that arise in actual linear flow are given in 
Table 1 for Blasius flow over a flat plate with a heated 
region of length 2a = 20 mm located at x = 100 mm 
and for air and water flow over three different elec- 
tronic materials. The range of values 1 < A < 100 
covers a wide variety of conjugate geometries. Because 
A contains the velocity gradient to the l/3 power, a 
hundred-fold variation in A represents a million-fold 
variation in fluid velocity gradient. 

3.1. Distributions on the interface 
Figure 3 shows the dimensionless interface tem- 

perature vs x/a geometry D/a = 10 for three cases 
A = 1, 10 and 100. Here 64 surface elements (16 on 
the heated region) were used to give a smooth dis- 
tribution. The heated region is located at 
- 1 < x/a < 1 and as expected the temperature is 
highest there. As parameter A increases the tem- 
perature decreases everywhere, and the upstream tem- 
perature is most strongly affected, so that at A = 100 
the temperature is essentially zero upstream of the 
heated region. The shape of the temperature curve at 

Table 1. Typical A values for laminar flow (fluid) over a flat plate (solid) for several fluid-solid combinations 

Fluid/solid k&, Pr 

Air/silicon 0.000178 0.69 lo4 2.28(10’) 7.39(104) 0.00234 
lo6 2.28(106) 7.39(105) 0.0234 

Air/alumina (96%) 0.001257 0.69 lo4 2.28(10’) 1.04(104) 0.0165 
lo6 2.28(106) 1.04(105) 0.165 

Air/epoxy fiberglass (FR-4) 0.11 0.69 lo4 2.28(10’) 1.20(10*) 1.45 
lo6 2.28(106) 1.20(103) 14.5 

Water/silicon 0.00406 6.7 lo4 2.22(104) 6.92(103) 0.114 
lo6 2.22(107) 6.92(10’) 1.14 

Water/alumina (96%) 0.0287 6.7 104 2.22(104) 980.0 0.807 
IO6 2.22(107) 9800.0 8.07 

Water/epoxy fibergks (FR-4) 2.51 6.7 lo4 2.22(104) 11.2 70.5 
lo6 2.22(107) 112.0 705.0 

NOTE : z = 1/2hlVL * c, 

C, = 0.66416 

x/a = 10. 
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-1 

-2 

-3 

-A= 1. 
Q----n = IO. 
----=A = 100. 

1o-41 I 
’ 8 8 1 8 8 8 4 1 3 8 2 1 

-5 0 5 10 
x/a 

Fig. 3. Temperature along the fluid-solid interface ; the heat 
source is located on (- 1 < x/a < 1). 

1.0 

0.8 

o 0.6 

z 
0.4 

0.2 

Fig. 4. Heat flux to the fluid along the fluid-solid interface. 

A = 100 is the same as that predicted by a fluid alone 
heated uniformly over a small heated region and insu- 
lated elsewhere (see for example ref. [26] page 363). 
Slightly downstream of the heated region the tem- 
perature decays at the same rate for every A-value ; 
this behavior was also observed experimentally by 
Ortega et al. [22]. 

Figure 4 shows the normalized heat flux entering 
the fluid along the interface for the same conditions 
as Fig. 3. This problem involves a split in heat at 
the heated region ; some of the introduced heat goes 
directly to the fluid and some goes directly to the 
solid. The heat flux distribution is strongly local to 
the heated region, and outside the heated region the 
heat flux is larger upstream compared to downstream. 
As A increases the (normalized) fluid heat flux 
approaches 1.0 on the heated region, which means 
that most of the heat flows directly to the fluid. All of 

1 
-A= 1. 
=A= 10. 
M A=lOO. 

Fig. 5. Modified Nusselt number along the fluid-solid inter- 
face. 

the introduced heat eventually finds its way into the 
fluid because the solid is insulated at ys = D. Conse- 
quently the integral of the heat flux qr over the inter- 
face is equal to the introduced heat, 1 q&x = 2a-q,,. 

Together the temperature and heat flux dis- 
tributions completely characterize the heat transfer at 
the interface and the Nusselt number is derived from 
these. Figure 5 shows the modified Nusselt number 
N:(x) vs x+ for the same conditions as Figs. 3 and 4. 
In Fig. 5 the three curves at A = 1, 10 and 100 have 
different average values ; however, all three curves 
have a very similar shape. The fact that the shape of 
the NJ curve is similar across a wide range of A-values 
indicates that the modified Nusselt number dis- 
tribution does not show the fluid-dominated behavior 
at large A-values. In contrast the temperature and 
heat flux curves (Figs. 3 and 4) change shape when 
the fluid dominates the heat transfer. The point of this 
discussion is that a study of the Nusselt number, by 
itself, is not sufficient to characterize when conjugate 
heat transfer is dominated by the fluid. 

Far upstream of the heated strip the N,* value is 
constant since in the present study the velocity field 
is everywhere fully developed and the solid extends 
infinitely far upstream ; there is no abrupt ‘leading 
edge’ in the computational domain. In a study of 
entrance flow, Sugavanam et al. [19] show that N, is 
also constant in a region upstream of the heated strip, 
however at the leading edge of the plate the N. values 
show a precipitous peak. This is expected from con- 
vection theory which predicts that the heat transfer 
coefficient becomes infinite where a thermal boundary 
layer begins abruptly, such as at the leading edge of a 
solid plate. 

3.2. Spatial averages on the heated strip 
The spatial average modified Nusselt number on 

the heated region is plotted in Fig. 6 in the form 2 
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heated strip to the fluid 2 is presented vs A. The heat 
flux depends strongly on D/a at small values of A, and 
as A increases the values of q: all approach the value 
unity. There are at least two ways to look at this large- 
A limit. If A becomes large because the fluid flow 
becomes large, then the fluid-side heat transfer 
coefficient is large and most of the heat goes directly 
to the fluid flow. If A increases because the con- 
ductivity ratio kf/ks increases, then the effect of the 
solid decreases and a decreasing fraction of the heat 
goes directly to the solid. If the effect of the solid 
disappears then the effect of solid thickness D/a must 
also disappear. 

Fig. 6. SD~ 
jugate Peclet number for D/a = 0.01, 1.0 and 100. 

z itial average modified Nusselt number versus con- on the interface. Anderson defines a Biot number by 

Anderson [15] defines a dimensionless parameter 
for conjugate problems to predict when convection- 
only theory may be used to predict the temperature 

vs A for several D/a values. At larger values of A all 
the geometries give the same limiting behavior of flow- 
dominated heat transfer described by a straight line 

N,*= CA (19) 

where C is a constant. The above equation may be 
multiplied by k,/kf to give 

N u = CP”3. e (20) 

This proportionality between the ordinary Nusselt 
number N, and the one-third power of Peclet number 
was first shown in 1954 by Liepmann and Skinner 
[27] by a dimensional argument. The value of the 
proportionality constant C can be derived from fluid- 
only theory [28] by taking the spatial average of the 
heat transfer coefficient on a uniformly heated region 
in a shear flow : C := (3/2)1’3r(2/3) = 1.550 where r is 
the gamma function. 

In Fig. 7 the spatial-average heat flux from the 

1 .o 

- D/a = 0.01 
_--- D/a = 1 .O 
-+- D/a = 100. 

Fig. 7. Spatial-average heat flux to the fluid vs conjugate 
Peclet number for D/n = 0.01, 1.0 and 100. 

which is the ratio of the resistance to conduction along 
the solid to the resistance to convection from the 
heated strip. Anderson states that for Bi > 1 the tem- 
perature may be calculated with reasonable approxi- 
mation by fluid-only theory, and for Bi -c 1 conjugate 
analysis is required. Present research indicates that the 
use of fluid-only theory at B, = 1 is least accurate at 
D/a = 1 and the accuracy improves as D/a moves 
away from 1. A criterion from the present research 
for uniform accuracy at various D/a values may be 
based on parameter A: spatial average temperature 
predicted by fluid-only theory will be accurate within 
5% for A > 10. 

3.3. Correlations 
A correlation for N,* that matches Fig. 6 within 4% 

everywhere for 0.01 < D/a < 100 and 1 < A < 100 is 
given by 

p= lSA-1.3(&)(-&). (21) U 

A correlation for z vs A based on the relative size 
of the thermal resistance for heat transfer from the 
fluid and the solid that agrees with Fig. 7 within 4% 
is given by 

4: = 

Temperature values have been omitted due to 
space limitations. The local temperature is related 
to heat flux and Nusselt number exactly by 
T+ (x) q q: (x)/N,*(x). However, the spatial-average 
temperature on the heated region can be calculated 
approximately from the N,* and q: values given above 
by T+ = q:/Nz. This expression is approximate 
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Fig. 8. Spatial average _modified Nusselt number based on 
length scale D, N,; = hD/k,, vs conjugate Peclet number 

based on length scale D. 

because the integral of a quotient is different from the 
quotient of integrals. 

4. RESULTS, 1O-3 < A < 100 

Figure 8 shows the dimensionless heat transfer 
coefficient normalized by length scale D vs the con- 
jugate Peclet number normalized by length D. With 
length scale D the appropriate modified Nusselt num- 
ber is given by Nz = hD/k,, and the appropriate con- 
jugate Peclet number is A, = (kf/k,)(/3DZ/cr,)“3. In Fig. 
8 all of the different D/a curves converge towards 
one curve at small values of A,. In this regime, solid 
thickness D is better for normalizing the heat transfer 
instead of heated strip size ‘a’. This can be understood 
by considering that AD is proportional to fluid velocity 
gradient to the one-third power, and therefore small 
AD represents small fluid heat transfer coefficient. 
Other things being equal, as the heat transfer 
coefficient becomes smaller the temperature on the 
heated strip increases, more of the introduced heat 
flows directly to the solid, and a larger surface area is 
needed to transfer the heat to the fluid. Recall that all 
of the heat must eventually find its way to the fluid. 
Eventually the warmed region of the fluid-solid inter- 
face becomes much larger than the heated strip, and 
the size of the heated strip ‘a’ must have a decreasing 
influence on the results as AD decreases. 

In the special case for which the solid is of finite 
extent upstream of the heated strip (not studied in 
this paper), in the limit as A0 -+ 0 the plate becomes 
isothermal. For the finite-length plate the limit AD + 
0 is equivalent to k, + co and the solid-side thermal 
resistance will be small compared to the fluid-side 
thermal resistance (small Biot number). Under these 
circumstances the finite-length plate is similar to the 
geometry of Luikov [2] for which the Brun number 

given by equation (15) may be used with x = L, where 
L is the length of the plate. 

5. AXIAL HEAT CONDUCTION IN THE FLUID 

In this section the assumption of neglecting the fluid 
axial heat conduction is addressed. Several researchers 
have included the axial conduction of heat in the fluid 
for conjugate heat transfer calculations [16, 29-321 
and all have indicated that axial heat conduction in 
the fluid is negligible if the flow is large (large Pe) or 
if the solid thermal conductivity is much larger than 
that of the fluid (large k,/k,). 

In the Appendix an integral energy equation is 
developed that includes parameter (kJkJ*A. The inte- 
gral energy equation suggests that when parameter 
(kJk$A is large the axial conduction in the fluid may 
be neglected. 

Data from the literature has been used to show that 
large values of parameter (ks/kJ2A are correlated with 
cases for which the fluid axial conduction may be 
neglected. Table 2 contains a comparison of the spatial 
average Nusselt number for conjugate heat transfer 
calculations that include axial fluid conduction [32] 
with calculations that do not [23,33]. The last column 
in Table 2 contains the percent error caused by neg- 
lecting axial fluid conduction. The error has a well- 
defined trend that falls along a straight line on a log- 
log plot (not shown). This suggests that a power-law 
fit to the data is appropriate, and a best fit of the error 
data has the form 

y = 0.0595[(k,/kf)2A]-0.623 

where y is the error (percent). This curve fit suggests 
that the error associated with neglecting the fluid axial 
conduction in conjugate calculations is less than 1% 
for (kJkJ*A > 18. This condition is satisfied for many 
engineering flows, especially air flows. Refer to Table 
1 which contains values of parameter (kJk,)‘A in lami- 
nar flow for several fluid-solid combinations. The 
only case in Table 1 for which (ks/kf)*A < 18 is for 
low speed water flow over epoxy-Plexiglas. 

6. SUMMARY 

In this paper conjugate heat transfer results have 
been presented in a compact manner for a wide range 
of conjugate Peclet number A = (kf/k,)P]j3 and solid 
thickness D. For large values of A, fluid-flow behavior 
dominates and the appropriate length scale is the size 
of the heated strip ; for small values of A the appro- 
priate length scale is the thickness of the solid. Simple 
correlations for the heat transfer coefficient and for 
the fluid heat flux are suggested as predictive tools for 
conjugate heat transfer over a wide range of fluid 
how, thermal conductivity, and solid thickness ; one 
application is cooling of electronic components. 
Although the results presented are based on a fully- 
developed linear velocity profile, the Nusselt number 
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Table 2. Percent error in Nusselt number caused by neglecting fluid axial conduction, tabulated vs parameter (k,/kr)*A for 
D/a = co 

(k,lk#A k,lk, bla Ref. [32] 

79.4 50 1 108.0 
200 50 1 112.3 

31.75 20 1 45.55 
50.40 20 1 46.91 
17.46 11 5 14.83 
27.72 11 5 16.27 
36.32 11 5 17.43 

6.51 4.1 8 6.57 
15.87 10 00 8.79 
25.20 10 co 10.98 
33.07 10 cc 11.94 
40 10 co 13.10 

7.83 5 cc 5.94 
12.60 5 cc 7.44 
16.51 5 co 8.63 
20.00 5 co 9.66 

Ref. [23] 

- 
- 
- 
- 
- 
- 
- 

8.69 
10.49 
11.87 
13.03 
5.82 
7.35 
8.55 
9.59 

Ref. [33] 

108.55 
112.72 
45.07 
46.64 
14.71 
16.14 
17.32 
6.44 
- 

- 

% 
difference 

0.50 
0.37 
1.06 
0.58 
0.82 
0.77 
0.61 
2.01 
1.20 
0.83 
0.62 
0.53 
1.90 
1.20 
0.93 
0.71 

Here b/a is the width/length of the rectangular heated region, b/a = lr, is the 2-D strip 

results are accurate in developing laminar flows with 
errors of less than 1% for x/@&e) > 0.005. Also, a 
new combined parameter (kJkJ*A is associated with 12 

’ fluid axial heat conduction ; fluid axial conduction can 
be neglected in conjugate heat transfer within 1% 
error when (k&)‘A > 18. 13. 
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APPENDIX-COMBINED PARAMETER FOR FLUID 
AXIAL CONDUCTION 

The fluid axial conduction may often be safely neglected 
in conjugate heat transfer because either the fluid flow is 
rapid, described by a large enough Peclet number Pe, or 
because the thermal conductivity of the solid is much larger 
than that of the fluid, described by large k,/kc. These separate 
dimensionless parameters Pe and k,/k, arise from the con- 
vection-only theory and from conduction-only theory, 
respectively. In this Appendix a combined parameter 
(k,/k#A is derived, that determines when the fluid axial 
conduction term can be neglected. 

Integral energy equation 
An integral energy analysis will be carried out on a control 

volume that encompasses both the solid and the fluid. The 
control volume has thickness dx in the streamwise direction 
and height that is large enough to include the entire thickness 
of the solid and the entire thermal boundary layer in the 
fluid. The control volume is shown in Fig. Al. 

control volume 
thermal 

I-I-,-I ’ X 
Fig. Al. Control volume that encompasses the solid and the 

thermal boundary layer. 

A steady energy balance on the control volume involves 
three terms: the heat passing through the left-hand face, 
the heat passing through the right-hand face, and any heat 
introduced at the fluid-solid interface by the heated strip. 
The energy balance on the control volume is 

Qt‘,t(x)-Qt,,(x+dx)+q(x)*w*dx = 0. (Al) 

Here Qt,, represent the total x-direction transport of heat 
(W) through the control volume caused by all mechanisms 
in both the solid and the fluid ; q(x) is the heat flux (W m-‘) 
introduced by the heated strip; and, w is the out-of-plane 
width of the control volume. There is no y-direction transport 
of heat across the control volume surface because the bottom 
of the solid is insulated and the top of the control volume 
extends beyond the thermal boundary layer. Next divide the 
above equation by w *dx and take the limit as dx + 0 to find 
a differential equation for the x-direction transport of heat : 

1 dQd4 ---+4(x)=0. 
w dx (A2) 

This equation indicates that the derivative of the x-direction 
transport is proportional to the heat introduced by the heated 
strip. 

There are three mechanisms that contribute to the total x- 
direction transport of heat in conjugate heat transfer : the x- 
direction conduction in the solid Qs; the x-direction con- 
duction in the fluid Qr (the axial fluid conduction term) ; and, 
the velocity-based convection in the fluid Q_“. That is, 

Qtodx) = Q.W + QrW + Qc..vW (A3) 

The relative size of these transport terms will determine 
whether or not Qr(x) may be neglected. The Q-terms may be 
stated in the form of temperature by an integral description 
over the left-hand face of the control volume as follows : 

6441 

(A5) 

(‘46) 

Here 6, is the local thickness of the thermal boundary 
layer in the fluid. Next these integral terms will be made 
dimensionless with the variables given in equation (7) : 

(A7) 

In the above integrals the dimensionless length in the y- 
direction is y: = y,/a in the solid and y: = (y,/a)Pf” in the 
fluid. These distinct length scales for the fluid and the solid 
have previously been shown to be useful for the conjugate 
heat transfer problem. In the above expressions, because the 
integral terms have been made dimensionless, the relative 
size of each x-direction transport term is controlled by the 
coefficient in front of each integral. The fluid convection 
term QL has coefficient A = (k,/k,)Pf”, the conjugate 
Peclet number for shear flow. Fluid convection dominates 
when A > 10 as shown in Fig. 6. The fluid axial conduction 
term Qr(x) and the solid conduction term Q$(x) will be of the 
same order of magnitude if parameter (k,/k#A is of order 
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unity. The fluid conduction term can be neglected next to 
the solid conduction term if parameter (kJk#A is above a 
threshold value ; an estimate of the threshold value is given 
in the body of the paper. 

Buckingham-Pi theorem 
The combined para.meters discussed in this paper represent 

an altemativeform of the dimensionless parameters, however 
the number of dimensionless parameters is fixed by the Buck- 
ingham-Pi theorem [ 341. Briefly stated, the Buckingham-Pi 
theorem gives the number of dimensionless parameters, or 
‘Pi groups’, as n - b where n is the total number of quantities 
involved and 6 is the number of basic dimensions involved. 
The only restrictions placed upon the Pi-groups are that they 
be dimensionless and that they be linearly independent. 

An examination of equations (l)-(6), indicates that the 
temperature depend:; on the following unit-bearing quan- 
tities : 

T= T(x,y,,y,,8,cl,,k,,k,,D,a,q,). 648) 

That is, there are 11 quantities (including the temperature) 
whose units contain four basic dimensions (meters, seconds, 
Watts, and Kelvin). The Buckingham-Pi theorem gives 1 l- 
4 = 7 dimensionless parameters. There are several alternative 
sets of seven dimensionless parameters that could be used 
for this problem. For example, the length scale for the par- 
ameters can be the size of the heated strip (a) or the solid 
thickness (D); both of these length scales are used in this 

paper. One traditional set or seven dimensionless parameters 
is given by 

T+ = I”+ (x+ , Y: , Y: , D/a, P,, CWkd) . (A9) 

The present research suggests that a useful set of parameters 
is given by 

T+ = T+(x+,y:,y,+,Dla,A,(k,lk,)‘A). (Alo) 

Note that the last two parameters are linearly independent 
and they can be obtained by a product of powers of tra- 
ditional parameters Pe and (k,/kf). The important benefit of 
this new set of parameters, and the central result of this 
Appendix, is that parameter (k,/k#h drops out of the dimen- 
sionless governing equations when the fluid axial conduction 
is negligible. An integral energy equation has been used to 
demonstrate this; however, the same conclusion can be 
drawn from the differential equations in dimensionless form. 

Summary 
In this Appendix a new dimensionless parameter associ- 

ated with fluid axial conduction of heat has been identified 
from an integral energy equation that encompasses both the 
solid and the fluid. The new parameter combines the expected 
trends for the Peclet number Pe and the conductivity ratio 
(k,/kJ into a single parameter (k./k$A for determining when 
the fluid axial conduction may be neglected. The new par- 
ameter is a member of an equivalent set of dimensionless 
parameters allowed under the Buckingham-Pi theorem. 


